COMMON FIXED POINT THEOREM IN B-METRIC - LIKE SPACES

S. S. P. Singh
Assistant Professor, Department of Mathematics, S.N. Sinha College, Warisaligang, Nawada, India

Abstract

In this paper obtain common fixed point result involving generalized ($\psi-\varphi)$ - weakly contractive condition in b-metric- like space.

KEYWORDS: b- Metric Space, Fixed Point, Common Fixed Point, Cauchy Sequence.

Article History

Received: 20 Dec 2023 |Revised: 23 Dec 2023 |Accepted: 31 Dec 2023

INTRODUCTION

The concept of φ-contractive mappings was introduced by Rhoads[16].After word, some researchers introduced a few φ and $(\psi-\varphi)$ - weakly contractive condition and discussed the existence of fixed an common fixed point for these mapping [see $1,2,4,5,8,10,11,12,13,14,15,18,19]$.In particular Aghajani et al.[19] presented several common fixed point results of generalized weak contractive mapping in partially order b- metric spaces. Recently Guan et al.[3] introduced idea of bmetric -like space and give some theorems in this metric space. Further some researcher discussed common fixed point theorems in this metric spaces [see $3,5,6,7,9,17$]. In this paper obtain common fixed point result involving general (ψ, φ)weakly contractive to condition in b- metric -like- spaces. We give example to support our results. Obtained results are also generalizations of many theorems.

PRELIMINARIES

Definition [17]

Let X be a non empty set and $\mathrm{s} \geq 1$ be a given real number. A mapping $\mathrm{d}: \mathrm{X} \times \mathrm{X} \rightarrow[0, \infty)$ is said to be a b - metric if and only if, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \varepsilon \mathrm{X}$, the following conditions are satisfied

- $d(x, y)=0$ if and only if $x=y$
- $\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{y}, \mathrm{x})$
- $\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{s}[\mathrm{d}(\mathrm{x}, \mathrm{z})+\mathrm{d}(\mathrm{z}, \mathrm{y})]$.

The pair (X, d) is called a b-metric space with parameter $\mathrm{s} \geq 1$.
In general, the class of b-metric space is effectively larger than that of metric space, since $a b$ - metric is a metric with $s=1$. We can find several examples of b - metric space which is not metric space (sea [18]).

Definition [9]

Let X be a non empty set and $\mathrm{s} \geq 1$ be a given real number. A mapping d : $\mathrm{X} \times \mathrm{X} \rightarrow[0, \infty)$ is said to be a b-metric - like if and only if, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \varepsilon \mathrm{X}$, the following conditions are satisfied

- $d(x, y)=0$ implies if $x=y$
- $d(x, y)=d(y, x)$
- $\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{s}[\mathrm{d}(\mathrm{x}, \mathrm{z})+\mathrm{d}(\mathrm{z}, \mathrm{y})]$.

The pair (X, d) is called a b-metric- like space with parameter $\mathrm{s} \geq 1$.
We should note that in a b-metric- like space (X, d) if $\mathrm{x}, \mathrm{y} \varepsilon \mathrm{X}$ and $\mathrm{d}(\mathrm{x}, \mathrm{y})=0$ then $\mathrm{x}=\mathrm{y}$. But the converse need not be true and $d(x, x)$ may be positive for $x \varepsilon X$.

Example [9]

Let $\mathrm{X}=[0, \infty)$ and let a mapping $\mathrm{d}: \mathrm{XxX} \rightarrow[0, \infty)$ be defined by $\mathrm{d}(\mathrm{x} . \mathrm{y})=(\mathrm{x}+\mathrm{y})^{2}$ for all $\mathrm{x}, \mathrm{y} \varepsilon \mathrm{X}$. Then (X, d) is a b- metriclike space with parameter $\mathrm{s} \geq 2$.

Lemma [9]

Let (X, d) be a b - metric -like space with $\mathrm{s} \geq 1$. We assume that $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ are convergent to x and y respectively, we have $1 / s^{2} d(x, y)-1 / s d(x, x)-d(y, y) \leq \limsup _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right) \leq \operatorname{sd}(x, x)+s^{2} d(y, y)+s^{2} d(x, y)$

In particular, if $\mathrm{d}(\mathrm{x}, \mathrm{y})=0$, then we have $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)=0$. Moreover, for each $\mathrm{z} \mathrm{\varepsilon} \mathrm{X}$, we have
$1 / \operatorname{sd}(\mathrm{x}, \mathrm{z})-\mathrm{d}(\mathrm{x}, \mathrm{x}) \leq \limsup _{\mathrm{n} \rightarrow \infty} \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{z}\right) \leq \operatorname{sd}(\mathrm{x}, \mathrm{z})+\mathrm{sd}(\mathrm{x}, \mathrm{x})$
In particular, if $\mathrm{d}(\mathrm{x}, \mathrm{x})=0$, then we have $1 / \mathrm{sd}(\mathrm{x}, \mathrm{z}) \leq \limsup _{\mathrm{n} \rightarrow \infty} \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{z}\right) \leq \mathrm{sd}(\mathrm{x}, \mathrm{z})$.

Lemma [7]

Let (X, d) be a b - metric -like space with $\mathrm{s} \geq 1$.
Then 1. If $d(x, y)=0$, then $d(x, x)=d(y, y)=02$.If $\left\{x_{n}\right\}$ is a sequence with that $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0$. Then we have $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n}\right)=\lim _{n \rightarrow \infty} d\left(x_{n+1}, x_{n+1}\right)=0$
3. If $x \neq y$, then $d(x, y)>0$.

Theorem [1]

Let (X, d) be a complete b- metric- like- space with parameter $s \geq 1$ and let $f, g: X \rightarrow X$ be self mapping $f(X) c g(X)$ where $\mathrm{g}(\mathrm{x})$ is a closed subset of X . If there are function $\psi \varepsilon \Psi$ and $\varphi \varepsilon \Phi$ such that
$\Psi\left(\mathrm{s}^{2}[\mathrm{~d}(\mathrm{fx}, \mathrm{fy})]^{2}\right) \leq \psi(\mathrm{N}(\mathrm{x}, \mathrm{y}))-\varphi(\mathrm{M}(\mathrm{x}, \mathrm{y}))$,
where $N(x, y)=\max \left\{[d(f x, g x)]^{2},[d(g x, g y)]^{2},[d(f y, g y)]^{2}, d(f x, g x) d(f x, f y), d(f x, g x) d(g x, g y)\right.$,
and $\mathrm{M}(\mathrm{x}, \mathrm{y})=\max \left\{[\mathrm{d}(\mathrm{fy}, \mathrm{gy})]^{2},[\mathrm{~d}(\mathrm{fx}, \mathrm{gy})]^{2},[\mathrm{~d}(\mathrm{gx}, \mathrm{gy})]^{2}, \frac{[\mathrm{~d}(\mathrm{fx}, \mathrm{gy})] 2[1+[\mathrm{d}(\mathrm{gx}, \mathrm{gy})] 2]}{[1+[\mathrm{d}(\mathrm{fx}, \mathrm{gy})] 2]}\right\}$

- $\psi:[0, \infty) \rightarrow[0, \infty)$ is a continuous and non-decreasing function with $\psi(\mathrm{t})=0$ implies $\mathrm{t}=0$.
- $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a continuous and increasing function with $\varphi(\mathrm{t})=0$ if and only if $\mathrm{t}=0$,

Then f and g have a unique coincidence point in X. Moreover f and g have a unique common fixed point provided that f and g are weakly compatible.

MAIN RESULT

Theorem 3.1

Let (X, d) be a complete b - metric- like- space with parameter $s \geq 1$ and let $f, g: X \rightarrow X$ be self mapping $f(X) c g(X)$ where $\mathrm{g}(\mathrm{x})$ is a closed subset of X . If there are function $\psi \varepsilon \Psi$ and $\varphi \varepsilon \Phi$ such that
$\Psi\left(\mathrm{s}^{2}[\mathrm{~d}(\mathrm{fx}, \mathrm{fy})]^{2}\right) \leq \psi(\mathrm{M}(\mathrm{x}, \mathrm{y}))-\varphi(\mathrm{M}(\mathrm{x}, \mathrm{y})),$.
Where $M(x, y)=\max \left\{[d(f y, g y)]^{2},[d(f x, g y)]^{2},[d(g x, g y)]^{2}, \frac{[\mathrm{~d}(\mathrm{fx}, \mathrm{gy})] 2[1+[\mathrm{d}(\mathrm{gx}, \mathrm{gy})] 2]}{[1+[\mathrm{d}(\mathrm{fx}, \mathrm{gy})] 2]}, \frac{[\mathrm{d}(\mathrm{gx}, \mathrm{gy})] 2[1+[\mathrm{d}(\mathrm{gx}, \mathrm{gy})] 2]}{[1+[\mathrm{d}(\mathrm{fx}, \mathrm{gy})] 2]}\right\}$

- $\psi:[0, \infty) \rightarrow[0, \infty)$ is a continuous and non-decreasing function with $\psi(\mathrm{t})=0$ implies $\mathrm{t}=0$.
- $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a continuous and increasing function with $\varphi(t)=0$ if and only if $t=0$,

Then f and g have a unique coincidence point in X. Moreover f and g have a unique common fixed point provided that f and g are weakly compatible.

Proof

Let $\mathrm{x}_{0} \varepsilon \mathrm{X}$. As $\mathrm{f}(\mathrm{X}) \mathrm{c} \mathrm{g}(\mathrm{X})$, there $\mathrm{x}_{1} \varepsilon \mathrm{X}$ such that $\mathrm{fx}_{0}=\mathrm{gx}_{1}$. Now we define the sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ in X by $\mathrm{y}_{\mathrm{n}}=\mathrm{fx}_{\mathrm{n}}=$ $g x_{n+1}$ for all $n \varepsilon N$. If $y_{n}=y_{n+1}$ for some $n \varepsilon N$, then we have $y_{n}=y_{n+1}=f x_{n+1}=g x_{n+1}$

And f and g have a coincidence point. Without loss of generality, we assume that $y_{n} \neq y_{n+1}$ by lemma, we know that $d\left(y_{n}, y_{n+1}\right)>0$ for all $n \varepsilon N$. Applying 3.1 with $x=x_{n}$ and $y=x_{n+1}$, we obtain

$$
\begin{align*}
& \left.\Psi\left(\mathrm{s}^{2}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)\right]^{2}\right)=\Psi\left(\mathrm{s}^{2}\left[\mathrm{~d}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{fx}_{\mathrm{n}+1}\right)\right]^{2}\right) \leq \psi\left(\mathrm{M}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)\right)-\varphi\left(\mathrm{M}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)\right)\right) . \\
& \text { where } \mathrm{M}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)=\max \left\{\left[\mathrm{d}\left(\mathrm{fx}_{\mathrm{n}+1}, \mathrm{gx}_{\mathrm{n}+1}\right)\right]^{2},\left[\mathrm{~d}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{gx}_{\mathrm{n}+1}\right)\right]^{2},\left[\mathrm{~d}\left(\mathrm{gx}_{\mathrm{n}}, \mathrm{gx}_{\mathrm{n}+1}\right)\right]^{2},\left[\mathrm{~d}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{gx} \mathrm{~g}_{\mathrm{n}}\right)\right]^{2}[1+\right. \\
& \left.\qquad\left[\mathrm{d}\left(\mathrm{gx}_{\mathrm{n}}, \mathrm{gx}_{\mathrm{n}+1}\right)\right]^{2}\right] /\left[1+,\left[\mathrm{d}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{gx}_{\mathrm{n}+1}\right)\right]^{2}\right],\left[\mathrm{d}\left(\mathrm{gx}_{\mathrm{n}}, \mathrm{gx}_{\mathrm{n}+1}\right)\right]^{2}\left[1+\left[\mathrm{d}\left(\mathrm{gx}_{\mathrm{n}}, \mathrm{gx}_{\mathrm{n}+1}\right)\right]^{2}\right] /[1+ \\
& \left.\left.\quad\left[\mathrm{d}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{gx}_{\mathrm{n}+1}\right)\right]^{2}\right]\right\} \\
& =\max \left\{\left[\left[\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)\right]^{2},\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)\right]^{2},\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}}\right)\right]^{2},\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}-1}\right)\right]^{2}\left[1+\mathrm{d}\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}}\right)\right]^{2}\right] /\left[1+\left[\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)\right]^{2}\right],\right. \\
& \left.\left.\quad\left[\mathrm{d}\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}}\right)\right]^{2}\left[1+\mathrm{d}\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}}\right)\right]^{2}\right] /\left[1+\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)\right]^{2}\right]
\end{align*}
$$

If $d\left(y_{n}, y_{n+1}\right) \geq d\left(y_{n}, y_{n-1}\right)>0$ for some $n \varepsilon N$. In view of 3.3, we have
$\mathrm{M}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \geq\left[\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)\right]^{2}$

$$
\begin{align*}
& =\max \left\{\left[\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)\right]^{2},\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}}\right)\right]^{2}\right\} \\
\Psi\left(\mathrm{s}^{2}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)\right]^{2}\right) \leq & \leq\left(\mathrm{s}^{2}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)\right]^{2}\right) \leq \psi\left(\mathrm{M}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)\right)-\varphi\left(\mathrm{M}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)\right) \\
& \leq \psi\left(\mathrm{M}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)\right)-\varphi\left(\mathrm{M}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)\right)
\end{align*}
$$

Which implies $\varphi\left[\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)\right]^{2}=0$ i.e. $\mathrm{y}_{\mathrm{n}}=\mathrm{y}_{\mathrm{n}+1}$ contradiction.
Hence $\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)<\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}-1}\right)$ and $\left\{\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)\right\}$ is a non increasing sequence and so there exists $\mathrm{r} \geq 0$
$\lim _{n \rightarrow \infty} d\left(y_{n}, y_{n+1}\right)=r$.
By 3.3, we have $\mathrm{M}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)=\left[\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)\right]^{2}$.
It follows that

$$
\begin{aligned}
\Psi\left(\mathrm{s}^{2}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)\right]^{2}\right) & \leq \psi\left(\mathrm{M}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)\right)-\varphi\left(\mathrm{M}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)\right) \\
& \leq \psi\left(\left[\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}-1}\right)\right]^{2}\right)-\varphi\left(\left[\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}-1}\right)\right]^{2}\right) .
\end{aligned}
$$

Now suppose that $\mathrm{r}>0$. By taking the \lim as $\mathrm{n} \rightarrow \infty$ in 3.4 , we have $\psi\left(\mathrm{r}^{2}\right) \leq \psi\left(\mathrm{r}^{2}\right)-\varphi\left(\mathrm{r}^{2}\right)$ a contradiction. This yields that

$$
\lim _{n \rightarrow \infty} d\left(y_{n}, y_{n+1}\right)=r=0
$$

Now we shall prove that $\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{m}}\right)=0$. Suppose on the contrary that $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{m}}\right) \neq 0$. It follows that there exists $\varepsilon>0$ for which one can find sequence $\left\{y_{m k}\right\}$ and $\left\{\mathrm{y}_{\mathrm{nk}}\right\}$ of $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ where nk is the smallest index for which $\mathrm{n}_{\mathrm{k}}>\mathrm{m}_{\mathrm{k}}>$ $\mathrm{k}, \varepsilon \leq \mathrm{d}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{nk}}\right)$, and $\mathrm{d}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{nk}-1}\right)<\varepsilon$.

In view of the triangle inequality in b- metric- like space, we get

$$
\begin{gathered}
\varepsilon^{2} \leq\left[\mathrm{d}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{nk}}\right)\right]^{2} \leq\left[\mathrm{sd}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{nk}-1}\right)+\mathrm{sd}\left(\mathrm{y}_{\mathrm{nk}-1}, \mathrm{y}_{\mathrm{nk}}\right)\right]^{2} \\
=\mathrm{s}^{2}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{nk}-1}\right)\right]^{2}+\mathrm{s}^{2}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{nk}-1}, \mathrm{y}_{\mathrm{nk}}\right)\right]^{2}+2 \mathrm{~s}^{2} \mathrm{~d}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{nk}-1}\right) \mathrm{d}\left(\mathrm{y}_{\mathrm{nk}-1}, \mathrm{y}_{\mathrm{nk}}\right) \ldots 3.6 \\
=\mathrm{s}^{2} \varepsilon^{2}+\mathrm{s}^{2}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{nk}-1}, \mathrm{y}_{\mathrm{nk}}\right)\right]^{2}+2 \mathrm{~s}^{2} \mathrm{~d}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{nk}-1}\right) \mathrm{d}\left(\mathrm{y}_{\mathrm{nk}-1}, \mathrm{y}_{\mathrm{nk}}\right) . \text { Using equality } 3.5
\end{gathered}
$$

and taking the upper limit as $\mathrm{k} \rightarrow \infty$ in the above inequality, we obtain

$$
\varepsilon^{2} \leq \limsup _{\mathrm{k} \rightarrow \infty}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{nk}}\right)\right]^{2} \leq \mathrm{s}^{2} \varepsilon^{2}
$$

As the same arguments, we deduce the following results

$$
\begin{aligned}
& \varepsilon^{2} \leq\left[\mathrm{d}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{nk}}\right)\right]^{2} \leq\left[\mathrm{sd}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{nk}-1}\right)+\mathrm{sd}\left(\mathrm{y}_{\mathrm{nk}-1}, \mathrm{y}_{\mathrm{nk}}\right)\right]^{2} \\
& =\mathrm{s}^{2}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{nk}-1}\right)\right]^{2}+\mathrm{s}^{2}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{nk}-1}, \mathrm{y}_{\mathrm{nk}}\right)\right]^{2}+2 \mathrm{~s}^{2} \mathrm{~d}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{nk}-1}\right) \mathrm{d}\left(\mathrm{y}_{\mathrm{nk}-1}, \mathrm{y}_{\mathrm{nk}}\right) \\
& {\left[\mathrm{d}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{nk}}\right)\right]^{2} \leq\left[\mathrm{sd}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{mk}-1}\right)+\operatorname{sd}\left(\mathrm{y}_{\mathrm{mk}-1}, \mathrm{y}_{\mathrm{nk}}\right)\right]^{2}} \\
& =\mathrm{s}^{2}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{mk}-1}\right)\right]^{2}+\mathrm{s}^{2}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{mk}-1}, \mathrm{y}_{\mathrm{nk}}\right)\right]^{2}+2 \mathrm{~s}^{2} \mathrm{~d}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{mk}-1}\right) \mathrm{d}\left(\mathrm{y}_{\mathrm{mk}-1}, \mathrm{y}_{\mathrm{nk}}\right) \\
& {\left[\mathrm{d}\left(\mathrm{y}_{\mathrm{mk}-1}, \mathrm{y}_{\mathrm{nk}}\right)\right]^{2} \leq\left[\mathrm{sd}\left(\mathrm{y}_{\mathrm{mk}-1}, \mathrm{y}_{\mathrm{mk}}\right)+\mathrm{sd}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{nk}}\right)\right]^{2}} \\
& =\mathrm{s}^{2}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{mk}-1}, \mathrm{y}_{\mathrm{mk}}\right)\right]^{2}+\mathrm{s}^{2}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{nk}}\right)\right]^{2}+2 \mathrm{~s}^{2} \mathrm{~d}\left(\mathrm{y}_{\mathrm{mk}-1}, \mathrm{y}_{\mathrm{mk}}\right) \mathrm{d}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{nk}}\right)
\end{aligned}
$$

In view 3.8, we have

$$
\varepsilon^{2} / \mathrm{s}^{2} \leq \limsup _{\mathrm{k} \rightarrow \infty}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{nk}-1}\right)\right]^{2} \leq \varepsilon^{2}
$$

Using 3.9 and 3.10, we obtain

$$
\varepsilon^{2} / \mathrm{s}^{2} \leq \limsup _{\mathrm{k} \rightarrow \infty}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{mk}-1}, \mathrm{y}_{\mathrm{nk}}\right)\right]^{2} \leq \mathrm{s}^{4} \varepsilon^{2}
$$

Similarly, we deduce that

$$
\begin{align*}
& {\left[\mathrm{d}\left(\mathrm{y}_{\mathrm{mk}-1}, \mathrm{y}_{\mathrm{nk}-1}\right)\right]^{2} \leq\left[\mathrm{sd}\left(\mathrm{y}_{\mathrm{mk}-1}, \mathrm{y}_{\mathrm{mk}}\right)+\mathrm{sd}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{nk}-1}\right)\right]^{2}} \\
& =\mathrm{s}^{2}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{mk}-1}, \mathrm{y}_{\mathrm{mk}}\right)\right]^{2}+\mathrm{s}^{2}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{nk}-1}\right)\right]^{2}+2 \mathrm{~s}^{2} \mathrm{~d}\left(\mathrm{y}_{\mathrm{mk}-1}, \mathrm{y}_{\mathrm{mk}}\right) \mathrm{d}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{nk}-1}\right) \\
& \\
& {\left[\mathrm{d}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{nk}}\right)\right]^{2} \leq\left[\mathrm{sd}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{mk}-1}\right)+\operatorname{sd}\left(\mathrm{y}_{\mathrm{mk}-1}, \mathrm{y}_{\mathrm{nk}}\right)\right]^{2}} \\
& =\mathrm{s}^{2}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{mk}-1}\right)\right]^{2}+\mathrm{s}^{2}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{mk}-1}, \mathrm{y}_{\mathrm{nk}}\right)\right]^{2}+2 \mathrm{~s}^{2} \mathrm{~d}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{mk}-1}\right) \mathrm{d}\left(\mathrm{y}_{\mathrm{mk}-1}, \mathrm{y}_{\mathrm{nk}}\right) \\
& \leq \mathrm{s}^{2}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{mk}-1}\right)\right]^{2}+\mathrm{s}^{2}\left[\mathrm{sd}\left(\mathrm{y}_{\mathrm{mk}-1}, \mathrm{y}_{\mathrm{nk}-1}\right)+\mathrm{sd}\left(\mathrm{y}_{\mathrm{nk}-1}, \mathrm{y}_{\mathrm{nk}}\right)\right]^{2}+ \\
& 2 \mathrm{~s}^{2} \mathrm{~d}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{mk}-1}\right)\left[\mathrm{sd}\left(\mathrm{y}_{\mathrm{mk}-1}, \mathrm{y}_{\mathrm{nk}-1}\right)+\mathrm{s} \mathrm{~d}\left(\mathrm{y}_{\mathrm{nk}-1}, \mathrm{y}_{\mathrm{nk}}\right)\right]
\end{align*}
$$

It follows that
$\varepsilon^{2} / \mathrm{s}^{4} \leq \limsup _{\mathrm{k} \rightarrow \infty}\left[\mathrm{d}\left(\mathrm{y}_{\mathrm{mk}-1}, \mathrm{y}_{\mathrm{nk}-1}\right)\right]^{2} \leq \mathrm{s}^{2} \varepsilon^{2}$
Through the definition of $M(x, y)$, we have
$\mathrm{M}\left(\mathrm{x}_{\mathrm{mk}}, \mathrm{x}_{\mathrm{nk}}\right)=\max \left\{\left[\mathrm{d}\left(\mathrm{y}_{\mathrm{nk}}, \mathrm{y}_{\mathrm{nk}-1}\right)\right]^{2},\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{nk}-1}\right)\right]^{2},\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{mk}-1}, \mathrm{y}_{\mathrm{nk}-1}\right)\right]^{2},\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{nk}-1}\right)\right]^{2}\left[1+\left[\mathrm{d}\left(\mathrm{y}_{\mathrm{mk}-1}, \mathrm{y}_{\mathrm{nk}-1}\right)\right]^{2}\right] / 1+\left[\mathrm{d}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{nk}}\right.\right.\right.$ $\left.\left.\left.{ }_{1}\right)\right]^{2},\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{mk}-1}, \mathrm{y}_{\mathrm{nk}-1}\right)\right]^{2}\left[1+\left[\mathrm{d}\left(\mathrm{y}_{\mathrm{mk}-1}, \mathrm{y}_{\mathrm{nk}-1}\right)\right]^{2}\right] / 1+\left[\mathrm{d}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{mk}-1}\right)\right]^{2}\right\}$ it is show that
$\mathrm{M}\left(\mathrm{x}_{\mathrm{mk}}, \mathrm{X}_{\mathrm{nk}}\right)=\max \left\{0, \varepsilon^{2} / \mathrm{s}^{2}, \varepsilon^{2} / \mathrm{s}^{4}, \varepsilon^{2} / \mathrm{s}^{2}, \varepsilon^{2} / \mathrm{s}^{2}\left(1+\varepsilon^{2} / \mathrm{s}^{4}\right)\right\}=\varepsilon^{2} / \mathrm{s}^{2}$
$\Psi\left(\left[\mathrm{d}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{nk}}\right)\right]^{2}\right) \leq \Psi\left(\mathrm{s}^{2}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{mk}}, \mathrm{y}_{\mathrm{nk}}\right)\right]^{2}\right) \leq \psi\left(\mathrm{M}\left(\mathrm{x}_{\mathrm{mk}}, \mathrm{x}_{\mathrm{nk}}\right)\right)-\varphi\left(\mathrm{M}\left(\mathrm{x}_{\mathrm{mk}}, \mathrm{x}_{\mathrm{nk}}\right)\right)$
$\psi\left(\mathrm{s}^{2} \varepsilon^{2}\right) \leq \psi\left(\mathrm{s}^{2} \varepsilon^{2}\right)-\varphi\left(\mathrm{s}^{2} \varepsilon^{2}\right)$ which is contradiction.
It follows that $\left\{y_{n}\right\}$ is a Cauchy sequence in X and $d\left(y_{m}, y_{n}\right)=0$. Since X is complete b - metric - like space, there exists $u \varepsilon X$ such that
$\lim _{n \rightarrow \infty} d\left(y_{n}, u\right)=\lim _{n \rightarrow \infty} d\left(f_{n}, u\right)=\lim _{n \rightarrow \infty} d\left(\mathrm{gx}_{n+1}, u\right)=\lim _{n, m \rightarrow \infty} d\left(y_{n}, y_{m}\right)=d(u, u)=0$
Further, we have $u \varepsilon g(X)$ since $g(X)$ is ciosed. It follows that one can choose a $z \varepsilon X$ such that $u=g z$, and one can write 3.12 as

$$
\lim _{\mathrm{n} \rightarrow \infty} \mathrm{~d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{gz}\right)=\lim _{\mathrm{n} \rightarrow \infty} \mathrm{~d}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{gz}\right)=\lim _{\mathrm{n} \rightarrow \infty} \mathrm{~d}\left(\mathrm{gx}_{\mathrm{n}+1}, \mathrm{gz}\right)=0
$$

If $\mathrm{fz} \neq \mathrm{gz}$, taking $\mathrm{x}=\mathrm{x}_{\mathrm{nk}}$ and $\mathrm{y}=\mathrm{z}$ in contractive condition 3.1, we get
$\Psi\left(\mathrm{s}^{2}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{nk}}, \mathrm{fz}\right)\right]^{2}\right) \quad \leq \psi\left(\mathrm{M}\left(\mathrm{x}_{\mathrm{nk}}, \mathrm{fz}\right)\right)-\varphi\left(\mathrm{M}\left(\mathrm{x}_{\mathrm{nk}}, \mathrm{fz}\right)\right)$
Where
$\mathrm{M}\left(\mathrm{x}_{\mathrm{nk}}, \mathrm{z}\right)=\max \left\{[\mathrm{d}(\mathrm{fz}, \mathrm{gz})]^{2},\left[\mathrm{~d}\left(\mathrm{fx}_{\mathrm{nk}}, \mathrm{gz}\right)\right]^{2},\left[\mathrm{~d}\left(\mathrm{gx}_{\mathrm{nk}}, \mathrm{gz}\right)\right]^{2}, \frac{[\mathrm{~d}(\mathrm{fxnk}, \mathrm{gz})] 2[1+[\mathrm{d}(\mathrm{gxnk}, \mathrm{gz})] 2]}{[1+[\mathrm{d}(\mathrm{fxnk}, \mathrm{gz})] 2]}\right.$,
$\left.\frac{[\mathrm{d}(\text { gxnk,gz })] 2[1+[\mathrm{d}(\text { gxnk,gz })] 2]}{[1+[\mathrm{d}(\mathrm{fxnk}, \mathrm{gz})] 2]}\right\}$
And we obtain $\limsup _{\mathrm{k} \rightarrow \infty} \mathrm{M}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{z}\right)$

$$
=\max \left\{[\mathrm{d}(\mathrm{fz}, \mathrm{gz})]^{2}, 0,0,0,0\right\}=[\mathrm{d}(\mathrm{fz}, \mathrm{gz})]^{2}
$$

Taking the upper limit as $\mathrm{k} \rightarrow \infty$ in 3.14

$$
\begin{aligned}
& \Psi\left([\mathrm{d}(\mathrm{fz}, \mathrm{gz})]^{2}\right) \leq \Psi\left(\mathrm{s}^{2} .1 / \mathrm{s}^{2}[\mathrm{~d}(\mathrm{fz}, \mathrm{gz})]^{2}\right) \leq \Psi\left(\mathrm{s}^{2}\left[\limsup _{\mathrm{k} \rightarrow \infty} \mathrm{~d}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{fz}\right)\right]^{2}\right) \leq \psi\left(\limsup _{\mathrm{k} \rightarrow \infty} \mathrm{M}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{z}\right)\right) \\
&-\varphi\left(\limsup _{\mathrm{k} \rightarrow \infty} \mathrm{M}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{z}\right)\right) \\
&=\psi\left([\mathrm{d}(\mathrm{fz}, \mathrm{gz})]^{2}\right)-\varphi\left([\mathrm{d}(\mathrm{fz}, \mathrm{gz})]^{2}\right), \text { which implies that } \varphi\left([\mathrm{d}(\mathrm{fz}, \mathrm{gz})]^{2}\right)=0 . \text { It follows that }
\end{aligned}
$$

$\mathrm{d}(\mathrm{fz}, \mathrm{gz})=0$ this implies that $\mathrm{fz}=\mathrm{gz}$. Therefore $\mathrm{u}=\mathrm{fz}=\mathrm{gz}$ is a point of coincidence foe f and g . We also conclude that the point of coincidence is unique. Assume on the contrary that there exists $\mathrm{z}, \mathrm{z}^{*} \varepsilon \mathrm{C}(\mathrm{f}, \mathrm{g})$ and $\mathrm{z} \neq \mathrm{z}^{*}$, appling 3.1 with $\mathrm{x}=$ z and $\mathrm{y}=\mathrm{z}^{*}$, we obtaind that $\Psi\left(\left[\mathrm{d}\left(\mathrm{fz}, \mathrm{fz}^{*}\right)\right]^{2}\right)=\Psi\left(\mathrm{s}^{2}\left[\mathrm{~d}\left(\mathrm{fz}, \mathrm{fz}^{*}\right)\right]^{2}\right) \leq \psi\left(\mathrm{M}\left(\mathrm{z}, \mathrm{z}^{*}\right)\right)-\varphi\left(\mathrm{M}\left(\mathrm{z}, \mathrm{z}^{*}\right)\right)=\psi\left(\left[\mathrm{d}\left(\mathrm{fz}, \mathrm{fz}{ }^{*}\right)\right]^{2}\right)-\varphi\left(\left[\mathrm{d}\left(\mathrm{fz}, \mathrm{fz}^{*}\right)\right]^{2}\right)$.

Hence $\mathrm{fz}=\mathrm{fz}$. That is the point of coincidence is unique. Considering the weak compatibility of f and g , it can be shown that z is a unique common fixed point.

Example

Let $X=[0,1]$ be endowed with the b - metric - like $d(x, y)=(x+y)^{2}$ for all $x, y \varepsilon x$ and $s=2$. Define mapping $f, g: X \rightarrow X$ by $f x=x / 64$ and $g x=x / 2$. Control function $\psi, \varphi:[0, \infty) \rightarrow[0, \infty)$ are defined as $\psi(t)=5 t / 4, \varphi(t)=48545 t / 87846$ for all $t \varepsilon[0, \infty)$. It is clear that $f(X) c g(X)$ is closed. For all $x, y \varepsilon X$, all the conditions of Theorem 3.1 are satisfied and 0 is the unique common fixed point of f and g.

REFERENCES

1. M. C. Arya, N. Chandra and M. C. Joshi "Common fixed point results for a generalized (ψ, φ)-rational contraction" Appl.Gen.Topol. 24(1), -2023, 129-144.
2. K. Fallahi, G. Soleimani and A. Fulga "Best proximity points for (ψ, φ) - weakly contraction and some applications" Filomat 37 no. 6 (2023).
3. H. Guan and J. Li "Common fixed point theorems of generalized (ψ, φ) - weakly contractive mappings in b- metriclike spaces and application" J. Math. 2021(2021), Article ID 6680381.
4. M. C. Arya, N. Chandra and M. C. Joshi "Fixed point of (ψ, φ) - contractive on metric spaces", J. Anal. 28(2020), 461-469.
5. S.S.P. Singh "Fixed point theorem for self-mapping on extended b2- metric spaces" IJRS, 9 no.2, (2020), 169178.
6. S.S.P. Singh "Fixed point theorem on m-metric spaces" IJRS, 10 no.1, (2020), 151-156.
7. K. Zoto, B.E.Rhoades and S.Radenovic "Some generalization for $(\alpha-\psi, \varphi)$ - contraction in b-metric like spaces and an application" Fixed Point Theory and Appl. 26, (2017).
8. H. Aydi, S. Hadj-Amor and E. Karapinar "some almost generalized ψ, φ) - contraction in G - metric spaces", Abstr. Appl. Anal. 2013 (2013), Article ID 165420
9. M.A. Alghamdi, N.Hussain and P.Salimi" Fixed point and coupled fixed point theorem in b-metric-like spaces" J.Inequalitiesand and Appl. 2013(2013) 1-25
10. H. Aydi, E. Karapinar and M. Postolache "tripled coincidence point theorem for weakly φ - contractions in partially ordered metric spaces" Fixed Point Theory Appl. 2012 (2012)
11. H. Aydi, E. Karapinar and W. Shatanawi "coupled fixed point results for (ψ, φ) - weakly contractive condition in ordered partial metric -spaces" comput. Math. Appl. 62 no. 12 (2011), 4449- 4460.
12. O. Popescu "Fixed point for (ψ, φ)- weakly contraction" Appl. Math. Lett. 24 (2011), 1-4.
13. D. Doric "Common fixed point for generalized (ψ, φ)- weakly contraction" Appl. Math. Lett. 22 (2009), 18961900.
14. Q. Zhang and Y. Song "Fixed point theory for generalized φ - weakly contraction" Appl. Math. Lett. 22 (2009), 75-78.
15. P.N. Dutta and B.S. Choudhary "A generalization of contraction principle in metric spaces" Fixed Point Theory Appl. 2008 (2008): 406368.
16. B.E.Rhoades "Some theorems on weakly contraction maps" Non. Anal. Theory $47 . n o .4$ (2001), 2683-2693.
17. S. Czerwik "Contraction mappings in b-metric spaces" Acta Mathematica et Informatica Universitatis Ostraviensis 1, (1993), 5-11.
18. S.L. Singh and B. Prasad "Some coincidence theorems and stability of iterative procedures" Computer Mathematics with Applications 55, no. 11(2008), 2512-2520.
19. A. Aghaiani, M. Abbas and I.R. Roshan "Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces" Math. Slovaca 4, 941-960.
